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The Kraichnan-Wyld perturbation expansion is used to justify the introduction of a renormalized response
function connecting two-point covariances at different times. The resulting relationship was specialized by a
suitable choice of initial conditions to the form of a fluctuation-dissipation relation(FDR). This was further
developed to reconcile the time symmetry of the covariance with the causality of the response by the intro-
duction of time ordering along with a counterterm. This formulation provides a solution to an old problem, that
of representing the time dependence of the covariance and response by exponential forms. We show that the
derivative(with respect to difference time) of the covariance now vanishes at the origin. This allows one to
study the relationships between two-time spectral closures and time-independent theories such as the self-
consistent field theory of Edwards or the more recent renormalization group approaches. We also show that the
renormalized response function is transitive with respect to intermediate times and report a different Langevin
equation model for turbulence. We note the potential value of this time-ordering procedure in all applications
of the FDR.
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Most renormalized spectral theories of turbulence have
been based on the Kraichnan-Wyld perturbation theory[1,2].
Let us denote the two-time covariance of the fluctuating tur-
bulent velocity field for modek by Csk; t ,t8d, where the de-
pendence is only on the scalar wave number due to the as-
sumption of isotropy. The covariance is related to the usual
energy spectrumEsk,td by

Esk,td = 4pk2Csk;t,td. s1d

Isotropy also implies time-reversal symmetry, which requires
that

Csk;t,t8d = Csk;t8,td. s2d

Reversion of the primitive perturbation series, obtained by
iterating the Navier-Stokes equation(NSE) for the bare co-
varianceCs0dsk; t ,t8d (which has a multivariate normal distri-
bution and is not an observable) in terms of the viscous
response(which is an observable), leads to coupled expan-
sions for the exact covarianceCsk; t ,t8d and a renormalized
response functionRsk; t ,t8d (say). The renormalized response
is not an observable but must nevertheless satisfy the causal-
ity condition

Rsk;t,t8d = 0 for t8 . t. s3d

Specific theories are obtained by introducing a specific
choice ofRsk; t ,t8d and truncating the renormalized expan-
sions at some low order. The first such theory was the Eule-
rian [20] direct interaction approximation(DIA: Ref. [1]), in
which the response to small perturbations in the forcing
(noise) is renormalized. Other pioneering theories are the
self-consistent field theories[3,4]. These theories are time
independent[21] and the renormalized response is expressed
in terms of the eddy decay ratevskd. It was shown[5] (see

also Ref.[6] for a discussion) that a connection could be
made between these approaches by considering the steady
state[whereCsk; t ,t8d=Csk; t− t8d], and assuming exponen-
tial forms for the covariance and renormalized response
function, thus

Csk;t − t8d = Cskde−vskdut−t8u; s4d

Rsk;t − t8d = e−vskdst−t8d. s5d

However, there is a basic problem with these forms in that
the time-reversal symmetry of Eq.(2) is in practice not sat-
isfied, and that differentiating the steady-state covariance
with respect to difference time leads to a nonzero result at
the origin, wheret= t8 (see Ref.[6]). In this paper we will
show that a consideration of time ordering in the renormal-
ized response can allow the use of exponential time depen-
dences without encountering these problems.

We begin by considering the generalized covariance equa-
tion, as derived from the NSE[7], thus

F ]

]t
+ nk2GCassk ;t,t8d = lMabgskd

3E d3jkubsj ,tdugsk − j ,tduss− k,t8dl.

s6d

The Greek indices are just the usual Cartesian tensor indices
relating to the space dimensions and take the values 1, 2, or
3. The inertial transfer operatorMabgskd (see, for example,
Ref. [7]) is given by

Mabgskd =
1

2i
fkbPag + kgPabg, s7d

where the projectorPabskd is given by*Electronic address: w.d.mccomb@ed.ac.uk
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Pabskd = dab −
kakb

k2 . s8d

By using an integrating factor and integrating over time we
can write this as

Cassk ;t,t8d = Ra«
s0dsk ;t,sdCessk ;s,t8d

+ FlE
s

t

dt9Rae
s0dsk ;t,t9dMebgskd

3E d3jkubsj ,t9dugsk − j ,t9duss− k,t8dlG ,

s9d

wheres is some initial time and the integrating factor is

Rae
s0dsk ;t,t9d =HPaeskde−nk2st−t9d t ù t9,

0 t , t9.
J s10d

From the primitive perturbation series[1,2], we have

Cassk ;t,t8d = Cas
s0dsk ;t,t8d + l2Cas

s2dsk ;t,t8d ¯ . s11d

When Eq. (11) is substituted in Eq.(9) we can see that
Rae

s0dsk ; t ,sd acts as a zero-order response for the zero-order
covariance, thus

Cas
s0dsk ;t,t8d = ust − sdRae

s0dsk ;t,sdCes
s0dsk ;s,t8d. s12d

This is an exact result. We shall call this the zero-order or
bare result. Re-arranging Eq.(9) to prompt the next step,

Cassk ;t,t8d = FRa«
s0dsk ;t,sd

+
1

Cessk ;s,t8d
lE

s

t

dt9Rae
s0dsk ;t,t9dMebgskd

3E d3jkubsj ,t9dugsk − j ,t9duss− k,t8dlG
3Cessk ;s,t8d, s13d

we postulate that we may write this in its renormalized form
as

Cassk ;t,t8d = ust − sdRaesk ;t,sdCessk ;s,t8d, s14d

or in its isotropic version as

Csk;t,t8d = ust − sdRsk;t,sdCsk;s,t8d, s15d

where theust−sd incorporates the causality condition. We
have effectively replaced the zero-order equation(12) by its
renormalized version using the replacements

Cs0d → C,

Rs0d → R. s16d

As yet we have made no choice about the time ordering of
the two timest and t8, and thus the symmetry under inter-
change oft and t8 is untested in Eq.(15). If we explicitly
choose the time ordering ast. t8 say, then this is equivalent

to applying the Heaviside unit-step functionust− t8d to both
sides of Eq.(15)

ust − t8dCsk;t,t8d = ust − t8dust − sdRsk;t,sdCsk;s,t8d.

s17d

If we now sets= t8 in Eq. (17), which amounts to a choice
of the initial condition, we get

ust − t8dCsk;t,t8d = ust − t8dRsk;t,t8dCsk;t8,t8d. s18d

This result takes the form of a fluctuation-dissipation rela-
tionship (or FDR). Of course such relationships are most
familiar in microscopic systems at thermal equilibrium but
over the years there has been quite some discussion of the
way in which relationships like this occur in turbulence
theory (for example, see Ref.[8] and references therein).
More recently Frederiksen and Davies[9] have distinguished
between spectral theories by the way in which relationships
of the form of Eq.(18) play a part.

We now introduce a representation of the covariance
which preserves the symmetry under interchange of time ar-
guments as

Csk;t,t8d = ust − t8dCsk;t,t8d + ust8 − tdCsk;t,t8d

− dt,t8Csk;t,t8d. s19d

Using Eq.(17) to expand the right-hand side of Eq.(19) we
obtain

Csk;t,t8d = ust − t8dust − sdRsk;t,sdCsk;s,t8d

+ ust8 − tdust8 − pdRsk;t8,pdCsk;p,td

− dt,t8Csk;t,t8d. s20d

Equation(20) may be written in the form of a time-ordered
fluctuation-dissipation relation by using Eq.(18) to construct
it instead,

Csk;t,t8d = ust − t8dRsk;t,t8dCsk;t8,t8d

+ ust8 − tdRsk;t8,tdCsk;t,td

− dt,t8Csk;t,t8d. s21d

The symmetry of both these covariances, Eqs.(20) and(21),
can be broken simply by applying a unit-step function to
both sides. This will yield something like Eq.(17) or (18),
respectively, depending on which time ordering is chosen.

Turning now to the problem of the exponential forms as
given by Eqs.(4) and(5) we find that this time-ordered rep-
resentation(19) has the property that

lim
t→t8

]

]t
Csk;t,t8d = 0, s22d

as it should for stationary turbulence. We can show this result
by using Eq.(5) in Eq. (21) to obtain

Csk;t,t8d = ust − t8dexph− vskdst − t8djCsk;t8,t8d

+ ust8 − tdexph− vskdst8 − tdjCsk;t,td

− dt,t8Csk;t,t8d. s23d

Using the property of stationary turbulence
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Csk;t,td = Cskd, s24d

and the representation fordt,t8

dt,t8 = ust − t8dust8 − td, s25d

Eq. (23) becomes

Csk;t,t8d = ust − t8dexph− vskdst − t8djCskd

+ ust8 − tdexph− vskdst8 − tdjCskd

− ust − t8dust8 − tdCsk;t,t8d. s26d

Taking the derivative with respect tot, substituting Eq.(21)
in places, collecting all the terms and taking the limitt→ t8,
we find

lim
t→t8

]

]t
Csk;t,t8d = − Cskdvskd + Cskd lim

t→t8
dst − t8d

+ Cskdvskd − Cskd lim
t→t8

dst8 − td

+ Cskdvskd − Cskd lim
t→t8

dst8 − td

− Cskdvskd + Cskd lim
t→t8

dst − t8d. s27d

Using the fact that thed function behaves like an even func-
tion, namelydst− t8d=dst8− td, we can see that the terms can-
cel in pairs and we are left with the desired result Eq.(22).

In contrast to this, the use of Eq.(4) by Leslie failed to
obtain this result[6]. This is because the representation in
Eq. (21) exhibits the time-reversal symmetryt↔ t8 in a more
manifest way than Eq.(4). Leslie, for his calculation regard-
ing the time derivative of the stationary covariance at the
origin, takest. t8 for the representation of the covariance,
whereas we have determined in Eq.(2) that the covariance is
symmetric under interchange oft and t8.

Finally, we can show that the renormalized response is
transitive with respect to intermediate times. Equating the
right-hand side of Eq.(17) with the right-hand side of Eq.
(18) we obtain

ust − t8dRsk;t,t8dCsk;t8,t8d = ust − t8dust − sd

3 Rsk;t,sdCsk;s,t8d. s28d

Expanding the right-hand side of Eq.(28) using Eq.(21) we
have

ust − t8dRsk;t,t8dCsk;t8,t8d

= hfust − t8dust − sdRsk;t,sd

3uss− t8dRsk;s,t8dCsk;t8,t8dgja + hfust − t8dust − sd

3Rsk;t,sdust8 − sdRsk;t8,sdCsk;s,sdgjb

− hfust − t8dust − sdRsk;t,sddt8,sCsk;s,t8dgjc. s29d

Specializing to the caset.s. t8 corresponds toh·jb=0 and
h·jc=0, leaving

ust − t8dRsk;t,t8dCsk;t8,t8d

= fust − t8dust − sdRsk;t,sduss− t8dRsk;s,t8dCsk;t8,t8dg.

s30d

We now use the contraction property of the Heaviside func-
tion ust−sduss− t8d=ust− t8d to write Eq.(30) as

ust − t8dRsk;t,t8dICsk;t8,t8d

= ust − t8dRsk;t,sdRsk;s,t8dI

3Csk;t8,t8d. s31d

[The underlined areas denote the origin of Eq.(32).] From
this above result, we can deduce the transitive property of the
renormalized response

Rsk;t,t8d = Rsk;t,sdRsk;s,t8d. s32d

These may seem like small results but the fact is that the
renormalized perturbation theories of turbulence, which
looked so promising initially, have been essentially in a static
state for at least three decades. Sometimes the subject is
described as being “mired in controversy” but in reality a
sober appraisal reveals only a few minor unresolved issues.
With the difficulties of using exponential representations of
time dependences resolved, the way is clear to explore and
learn from the relationships between the different classes of
theories. This also includes renormalization group methods,
where there is a relationship between DIA[1] and the
method of iterative averaging[10,11].

In this short communication we have already shown that
our time-ordering approach can be used to prove the transi-
tivity of the renormalized response function. This is not, in
itself, a trivial result and moreover has important implica-
tions for the dimensional reduction of this type of theory
[12]. We have also used these methods to derive a different
Langevin equation model of turbulence. With theansatzof
local energy transfer to determine the response(see Ref.[13]
and references therein), along with an assumption of an ex-
ponential relationship between the response function and the
eddy damping, as given by Eq.(5), we find

S ]

]t
+ 2nk2DCsk;td = 2E d3jLsk,j dDsk, j ,uk − j u;tdCsuk − j u;td

3fCs j ;td − Csk;tdg

= − 2vsk;tdCsk;td, s33d

vsk;td = −E d3jLsk,j dDsk, j ,uk − j u;td
Csuk − j u;td

Csk;td

3fCs j ;td − Csk;tdg, s34d

and
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]Dsk, j ,uk − j u;td
]t

= 1 − fsnk2 + n j2 + nuk − j u2d + vsk;td

+ vs j ;td + vsuk − j u;tdgDsk, j ,uk − j u;td,

s35d

where

Lsk,j d = − 2MabgskdMbadsj dPgdsk − j d. s36d

The initial conditions can be taken as

Csk;t = 0d =
Esk;t = 0d

4pk2 , s37d

where Esk; t=0d is some arbitrarily chosen initial energy
spectrum, and

Dsk, j ,uk − j u;t = 0d = 0. s38d

This is similar to the test-field model[14], but has an
extra term in the equation for the eddy damping. The extra
term cancels infrared divergences and this means that(unlike

the test-field model) it does not require an additional hypoth-
esis and adjustable constant to be compatible with the Kol-
mogorov distribution. An account of this work is in prepara-
tion.

Finally, in the interests of completeness, we should men-
tion that following the seminal paper of Leith[8] the funda-
mental issues involved in obtaining fluctuation-dissipation
relationships for chaotic systems have received attention,
particularly from the point of view of dynamical systems
theory[15–19]. It has been shown that a general fluctuation-
dissipation relationship exists for systems which are mixing.
The precise form of the relationship for any specific system
is found to depend on the invariant measure of that system.
The relationship of our present work to this existing activity
raises several interesting questions and we intend to address
these in our forthcoming paper mentioned above.
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